© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

AN APPROACH FOR TEST CASES
OPTIMIZATION IN REFERENCE TO HEALTH
DATA USING SOFTWARE TECHNIQUE

Sunita Khurana, Shakti Banerjee”
School of Statistics, Devi Ahilya University, Indore, M.P., India

Abstract: In this paper we consider a software technique of orthogonal array testingapplying C programming approach. The
main objective of a screening experiment is to identify significant factors of the studies. All the fields (Engineering, Medical,
Agriculture etc.) require designs with minimum number of runs. Many designsuse the number of factors k equal ton — 1, where n
is the number of runs. But scientists can’t even afford the number of runs required for these designs. For this purpose we try
designs to be used with C language for efficient work on enterprise applications to complete any statistical experimental design
with minimum time and cost. Orthogonal array testing strategygenerates reduced numbers of test cases automatically. It is very
highly desirable in the context of industrial experimentation.

Keywords: Orthogonal Array Approach, Pairwise testing strategy,Mixed orthogonal array approach, Software Testing,
Test Case Generation, Test Case Reduction, OATS(Orthogonal array testing Strategy)

1. INTRODUCTION

Pairwise testing strategy almostrequires fewer tests than orthogonal array based solutions.It is possible in some situations for
them to have an equal number of tests. In software testing however, the added costs imposed by the extra tests are not worth.
Software orthogonal array testing consists of test planning, test case design, test case execution, test result data collection and
evaluation. It covers that appropriate actions is to be taken for improving the software solutions [8]. For any given software
application we have huge number of test cases and we have to identify only those test cases that would lead us to expose
maximum number of undetected errors. The benefit of OATS is lower execution time, increased productivity and higher code
coverage [2].

The number of possible black-box test cases for any non-trivial software application is extremely large. The challenge in
testing is to reduce the number of test cases to a subset that can be executed with available resources and can also exercise the
software adequately so that majority of software defects are exposed. Black-box testing is one of the software techniques in
designing experiments based on combinatorial covering designs [3].

These designs cover or execute combinations of input parameters in a systematic and effective way and are most applicable in
testing data-driven systems where the manipulation of data inputs and the relationship between input parameters is the focus of
testing experiments [5].

Definition

An Orthogonal Array of strength t with N rows, k columns (k > t) based on s symbols is an Nxk array with
entries 0,1, ... ,.s — 1, say, so that every N Xt subarray contains each of the st possible t-tuples equally often as a row (say A
times) N must be a multiple of st , and 4 = N/s' is the index of the array Notation: OA(N; k; s; t) or sometimes
0A(N; s5)[2].

The following terminologies have been used in this approach:

Runs(N): the number of rows in the array. This directly translates to the number of test cases that will be generated by the
OATS technique.

Factors(k): the number of columns in an array. This directly translates to the maximum number of variables that can be
handled by this array.

Levels(s): the maximum number of values that can be taken on by any single factor. An orthogonal array will contain values
from O to Levels-1.

Strength: the number of columns it takes to see each of the Levels Strength possibilities equally often.

Orthogonal arrays are most often named following the pattern L guns (Levels Fatrs),

Suppose a system which has 4 parameters and each of them has 3 values. To test all the possible combinations of these
parameters (i.e. exhaustive testing) we will need a set of 3* = 81 test cases. But instead of testing the system for each combination
of parameters, we can use an orthogonal array to select only a subset of these combinations. Using orthogonal array testing, we
can maximize the test coverage while minimizing the number of test cases to consider. We here assume that the pair that
maximizes interaction between the parameters will have more defects and then the technique works and minimizes the test cases

2.

2. Orthogonal Array Testing Strategy (OATS)
We present the description of our proposed algorithm for 4 factors and nth rows in the following steps to construct the
orthogonal array for testing a program with f factors, each factor having p levels (the different values of factors used in testing).

JETIRA006237 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org ‘ 31

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

An OA is generally presented as a two-dimensional array, table, or matrix of N rows and k columns. Each entry in the array is
one element of a set of s “symbols”, often taken tobe {0,1,2...s — 1}or{1,2,3...s}. A standard notation often used to reference
an OA of N rows, k columns, and s symbols, of strength tisOA (N, k, s, t). OAs is used as a class of factorial designs. For this
purpose, N is the number of experimental runsk is the number of factors, s is the number of levels of each factor, and the array is
the set of entries in a design matrix for an s k experiment.

During orthogonal array testing, we observe the average change in the response when a factor is changed from one level to
another level. Hence to achieve the entire test coverage, we should have (f * p) number of test cases. We are using orthogonal
array approach to reduce the number of test cases.

For construction of array first we construct “p - tuples” (e1, €2ep)as e1= (0,1,2...p—1), e2= (1,2... p), ei= (i1 +
e1) mod p

2.1 Algorithm of Orthogonal Array Testing Strategy (AOATS)

AOATS can be applied to area in software testing as to:

*Derive test cases with multiple configurations for black-box testing of entire systems,

*Degree of interoperability testing in a large heterogeneous network i.e. select significant number of failures, caused by
parameter interactions.

» Assume a suite of test cases for all possible configurations which cannot be afforded.

« Balance three or more input parameters.

Calculate the minimal set of test configurations i.e. compute the minimal set of test parameter combinations.

Step I: //* Read inputs and identify whether P is prime or not. If not then generate next prime number. Also calculate the
number of rows*//

begin {Main}

Read the number of factors (F) and levels (P).
begin
for i:=1to P do

{

if(P%i==0)

c++;

}

end

if(c==2)
P=P;

else
P=P-1;
/I calculate number of rows
R=P*P;

Step 11: //* Construct the Tuples ey, ey, ...,ep*//

begin

for j:=0to P do

{ - -
eij]=j;

end;

begin

for j:==1to P do
{ -
e2[j]=j;
end;
begin
for (j=0;j<P;j++)

{
es[j]=ei[j]+e2[i+1];
if (es[j]>P)
{

es[j]=es[j]-P;
else

print(es[j]);

}

end;

JETIRA006237 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 32

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

Step I11: //* Fill the table *//
/I First column of table

begin

for k:==1to R do

{

if(k<=P)
print(1);
else
if(k<=P+P)
print(2);
else
print(3);
end;

/I Fill reaming column for rows P
begin
for j:=2to F do

{

if (k>P)
break;
print(k);
}

end;

/I Fill the reaming table with the help of tuples generated in Step Il
fori:=2to P do
begin

{
if(k==I[i])
{

for j:=2to F do
begin

if(i==2)
print(ez[j-1]);
else
print(es[j-2]);
}

end;

}

end;
fori:z=1to P do
begin

{
if(k==m[i])

{
for(j=2;j<=F;j++)
begin

if(i==1)

{
if((e2[j-1]+1)>P)
print((ez[j-1]+1)-P);
else
print((e2[j-1])+1);

}

else

{
if((e3[j-2]+1)>P)
print((es[j-2]+1)-P);
else
print((es[j-2])+1);
}

¥
if(k==q[i])

JETIRA006237 ‘ Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 33

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

forj:=2to F do
begin
if(i==1)

{
if((ez[j-1]+2)>P)
print((ez[j-1]+2)-P);
else
print((e2[j-1])+2);

}

else

{
if((e3[j-2]+2)>P)
print((es[j-2]+2)-P);
else
print((es[j-2])+2);
}

}

end;

}

end;

end; {Main}

Using above algorithm finally we get orthogonal array design which is shown in Table 2.1
Table 2.1
3

ROWS

V(N0 D|WIN| -
WIWINININ|FP PP
NFRPIWINRFRPIWN PN
RPWRPWNWINF-
WININNFP(WWIN[F|A~

9 3 3 2 1
here Table 2.1 gives a OA with 4 factors each at 3 levels in 9 runs.In the next step we check orthogonality of such design.

3. Concept of Orthogonality

Before thinking about the relationship between strength and resolution, it is helpful to briefly review two related senses in
which the word “orthogonality” is used. In describing OAs we say that two columns of s symbols are orthogonal, if each of the s,
2 (ordered) pairs of symbols appears in an equal number of rows. We can extend this idea to pair of sets of columns. For example,
in OAs of strength 4, every pair of columns is orthogonal to every other pair, in the sense that each of the s, 4 ordered pairs of
symbols appears in an equal number of rows. The concept easily generalizes to any two sets of columns, and applies whether the
two sets have columns in common or not. The orthogonal arrays have the following special properties that reduce the number of
experiments to be conducted [2].

1.The vertical column under each independent variables of the above table has a special combination of level settings. All the
level settings appear an equal number of times. For above L9 array under variable 4, level 1, level 2 and level 3 appears thrice.
This is called the balancing property of orthogonal arrays.

2.All the level values of independent variables are used for conducting the experiments.

3.The sequence of level values for conducting the experiments shall not be changed. This means one can’t conduct experiment
1 with variable 1, level 2 setup and experiment 4 with variable 1, level 1 setup. The reason for this is that the arrays of each factor
columns are mutually orthogonal to any other column of level values. The inner product of vectors corresponding to weights is
zero. If the above 3 levels are normalized between -1 and 1, then the weighing factors for level 1, level 2, level 3are-1,0, 1
respectively. Hence the inner product of weighing factors of independent variable 1 and independent variable 3 would be

(-1 * -1+-1*0+-1*1)+(0*0+0*1+0*-1)+(1*0+1*1+1*-1)=0

3.1 Algorithm of Orthogonality

Step I: //* Read the input *//

begin {Main}
fori:=1tondo
begin
forj:=1tokdo
input (read[i][j]);

JETIRA006237 ‘ Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 34

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

end;
Step I1: //* Find the inner product of one column with the remaining column *//

fori:=1tondo
begin
for j:==1to k do
begin

{
if(j==1)
temp= p[i](il;
pl[i][i]; temp* p[i][j+1];

end;
end;

fori:=1tondo
begin
for j:==2to k do
begin

if(j==2)

temp= p[i][{i];

p2[i]li]= timp* plIG+1];
end;

end;

fori:=1tondo
begin

for j:==3to k do
begin

{
if(j==3)
temp= p[i]{il;
p3[i]lfi]= te}mp* plIG+1];

end;
end;

Step I11: //* Compute the sum of each inner product of each column*//

for j:=1to k do
begin
{
T1=0;
fori:z=1tondo
begin
T1=T1+p1]i][;
end;

¥

end;

for j:=2 to k do
begin
{

T2=0;
fori:z=1tondo
begin

T2=T2+p2[i][jl;
end;

¥

end;

JETIRA006237 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 35

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

for j:=3 to k do
begin

{
T3=0;
for (i=1; i<=n; i++)
begin

T3=T3+p3[i][j];
end;

}
end;
end;{Main}

4. Case Study: In the data below, cross-sectional study used in my paper was conducted on urban and rural diabetic patients.
Demographic data and knowledge of participants was recorded regarding various aspects of diabetes type Il. There is a need to
enable the patients to understand the causes, risk factors, symptoms, signs, complications and various treatment modalities.
Clinical sign and symptoms were observed like mouth ulcer, dry skin, dry throat, night blindness, memory loss, depression, hair
fall etc. were observed during the treatment.

To investigate the relationships between participants, household, community level characteristics and diabetes awareness we
used test design using Orthogonal Array which creates an efficient and concise test suite with fewer test cases without
compromising test coverage. The experiments described in these examples are double-blind, which means that both the subjects
and the experimenters do not know which treatment any subject has received.

In our case study using L ¢(3%) array, we consider a system which has 4 parameters (Age, Type of exercise, Diet rating,weight
observed)and each of them has 3 levels. First, parameter age is represented with level 1-(below 40), level 2-(40-55),level 3-(55-
70) similarly other parameters represented in the table below. The permutationsof factor levels comprising a single treatment are
so chosen that their responses are uncorrelated between treatments and therefore each treatment gives a unique piece of
information.

The factors and various levels for each of the factors are listed below in Table 4.1:

Table 4.1: Factors and Levels listed for the Compatibility Testing:

Factors Level 1 Level 2 Level 3
Age Below40 40-55 55-70
Type of exercise No exercise Walk daily Yoga
Diet rating Poor Good Excellent
Weight observe Decrease Remain same Increase

here the highest level =3, which is a prime number. Hence the OA with p=3 are constructed as follows in Table 4.2:
Table 4.2: Orthogonal Array constructed for the Compatibility Testing of treatments in patients.

Test Number Age Type of exercise Diet rating Weight
observed
1 Below40 No exercise Poor Decrease
2 Below40 Walk daily Good Remain same
3 Below40 Yoga Excellent Increase
4 40-55 No exercise Good Increase
5 40-55 Walk daily Excellent Decrease
6 40-55 Yoga Poor Remain same
7 55-70 No exercise Excellent Remain same
8 55-70 Walk daily Poor Increase
9 55-70 Yoga Good Decrease

For 4 Factors, each with 3 levels, the total number of test cases = 3* = 81.With the Orthogonal Array Approach, we have been
able to reduce it to 9 Test Cases. Thus we have been able to reduce the testing effort to 11.11% of the total effort. Hence, Effort
Saved = 88.89%.

5. Conclusion:In this paper, we consider a problem of generating small sets of test cases where the combinations that have to
be covered by large input-output parameter relationships of a software system. That is, we only consider combinations of input
parameters that affect an output parameter. To solve this problem, we implemented algorithm approach to construct an interaction
testing system to generate small test cases. Particularly we are trying to apply an Algorithm of Orthogonal Array Testing Strategy
(AOATS) in statistical way for testing pair-wise interactions. Algorithm of Orthogonal Array Testing Strategy (AOATS) provides
a natural mechanism for testing systems to be deployed on a variety of arrays with software configurations which illustrates the
results in the above case study that focuses on test reduction technique using AOATS approach. Case study shows the reduction
of total test cases from 81 to 9 with the use of this algorithm 88.89% efforts have been saved.

JETIRA006237 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 36

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

References

[1] Banerji,S.: Orthogonal Array Approach for Test Case Optimization. International Journal of Advanced Research in Computer
and Communication Engineering Vol. 1, Issue 9, ISSN 2319-5940 (2012)

[2] Banerjee,S., et.al.: Some contribution in construction of orthogonal array testing approach for optimizing test cases in
diabetic people. Elixir statistics 101C 43830-43836, ISSN 2229 -712X (2016)

[3] Bach,J., Shroeder, P.: Pairwise testing - a best practice that isn’t” In Proceedings of the 22nd Pacific Northwest Software
Quality Conference, pages 180-196, (2004)

[4] Beizer,B.:Software Testing Techniques. Van Nostrand Reinhold, 2nd edition, (1990)

[5] Burr,K., Young, W.: Combinatorial test techniques: Table-based automation, test generation, and test coverage.

Intl.Conference on Software Testing, Analysis, and Review (STAR), San Diego CA, (1998)

[6] Clarke, L. A.: A System to Generate Test Data and Symbolically Execute Programs. IEEE Transactions on Software
Engineering, Vol. SE-2, No. 3, pp. 215-222(1976)

[7] DeCock, D.,Stufken, J.: On Finding Mixed Orthogonal Arrays of Strength 2 with Many 2-Level Factors. Statistics and
Probability Letters, 50, pp.383-388 (2000)

[8] Korel, B.: Automated Software Test Data Generation. Conference on Software Engineering, Vol 10, No. 8, pp. 870-879
(1990)

[9] Kuhn, D.R., Reilly, M.J.: An Investigation of the Applicability of Design of Experiments to Software Testing. 27th
NASAV/IEEE Software Engineering Workshop, NASA Goddard Space Flight Center, (2002)

[10]Lekivetz, R.: A New Algorithm For Obtaining Mixed-Level Orthogonal And Nearly-Orthogonal Arrays. Master of Science in
the Department of Statistics and Actuarial Science, Simon Fraser University (2006)

[11]Li,W. W., WuC. F. J.: Column wise-Pairwise Algorithms with Applications to the Construction of Supersaturated Designs.
Technometrics, 39, pp.171-179 (1997)

[12]Morell,L. J.:A Theory of Error-Based Testing. Ph.D. thesis, University of Maryland, College Park MD, Technical Report TR-
1395(1984)

[13]Salwan,R., Sehgal,R.:Test cases reduction technique considering the time and cost as evaluation standards. International
Conference on Advanced Computing, Communication and Networks’11 , Amity University uttar Pradesh ,India.

JETIRA006237 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 37

http://www.jetir.org/

